COLLEGE ALGEBRA

with Modeling and Visualization

GARY ROCKSWOLD

THIRD EDITION
Sequences

- Understand basic concepts about sequences
- Learn how to represent sequences
- Identify and use arithmetic sequences
- Identify and use geometric sequences
Introduction

- A sequence is a function that computes an ordered list.

Example

If an employee earns $12 per hour, the function \(f(n) = 12n \) generates the terms of the sequence \(12, 24, 36, 48, 60, \ldots \) when \(n = 1, 2, 3, 4, 5, \ldots \)

SEQUENCE

An **infinite sequence** is a function that has the set of natural numbers as its domain. A **finite sequence** is a function with domain \(D = \{1, 2, 3, \ldots, n\} \), for some fixed natural number \(n \).
Sequences

- Instead of letting y represent the output, it is common to write $a_n = f(n)$, where n is a natural number in the domain of the sequence. The terms of a sequence are

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

- The first term is $a_1 = f(1)$, the second term is $a_2 = f(2)$ and so on. The nth term or general term of a sequence is $a_n = f(n)$.
Example

Write the first four terms a_1, a_2, a_3, a_4,… of each sequence, where $a_n = f(n)$,

a) $f(n) = 5n + 3$

Solution

a) $a_1 = f(1) = 5(1) + 3 = 8$
 $a_2 = f(2) = 5(2) + 3 = 13$
 $a_3 = f(3) = 5(3) + 3 = 18$
 $a_4 = f(4) = 5(4) + 3 = 23$

b) $f(n) = (4)^{n-1} + 2$

b) $a_1 = f(1) = (4)^{1-1} + 2 = 2$
 $a_2 = f(2) = (4)^{2-1} + 2 = 6$
 $a_3 = f(3) = (4)^{3-1} + 2 = 18$
 $a_4 = f(4) = (4)^{4-1} + 2 = 66$
Recursive Sequence

- With a recursive sequence, one or more previous terms are used to generate the next term.
- The terms a_1 through a_{n-1} must be found before a_n can be found.

Example

a) Find the first four terms of the recursive sequence that is defined by $a_n = 3a_{n-1} + 5$ and $a_1 = 4$, where $n \geq 2$.

b) Graph the first 4 terms of the sequence.
Example continued

Solution

a) *Numerical Representation*

\[a_1 = 4 \]
\[a_2 = 3a_1 + 5 = 3(4) + 5 = 17 \]
\[a_3 = 3a_2 + 5 = 3(17) + 5 = 56 \]
\[a_4 = 3a_3 + 5 = 3(56) + 5 = 173 \]

The first four terms are 4, 17, 56, and 173.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>4</td>
<td>17</td>
<td>56</td>
<td>173</td>
</tr>
</tbody>
</table>
Solution continued

Graphical Representation

b) To represent these terms graphically, plot the points. Since the domain of the graph only contains natural numbers, the graph of the sequence is a scatterplot.
Arithmetic Sequences

Example

An employee receives 10 vacation days per year. Thereafter the employee receives an additional 2 days per year with the company. The amount of vacation days after \(n \) years with the company is represented by

\[
 f(n) = 2n + 10, \text{ where } f \text{ is a linear function.}
\]

How many vacation days does the employee have after 14 years? (Assume no rollover of days.)

Solution

\[
 f(14) = 2(14) + 10 = 38 \text{ days of vacation.}
\]
Arithmetic Sequence

- An arithmetic sequence can be defined recursively by $a_n = a_{n-1} + d$, where d is a constant. Since $d = a_n - a_{n-1}$ for each valid n, d is called the common difference. If $d = 0$, then the sequence is a constant sequence.

- A finite arithmetic sequence is similar to an infinite arithmetic sequence except its domain is $D = \{1, 2, 3, \ldots, n\}$, where n is a fixed natural number.

- Since an arithmetic sequence is a linear function, it can always be represented by $f(n) = dn + c$, where d is the common difference and c is a constant.
Example

Find a general term $a_n = f(n)$ for the arithmetic sequence; $a_1 = 4$ and $d = -3$.

Solution

Let $f(n) = dn + c$.
Since $d = -3$, $f(n) = -3n + c$.

$$a_1 = f(1) = -3(1) + c = 4 \quad \text{or} \quad c = 7$$

Thus $a_n = -3n + 7$.
Terms of an Arithmetic Sequence

nth TERM OF AN ARITHMETIC SEQUENCE

In an arithmetic sequence with first term a_1 and common difference d, the nth term, a_n, is given by

$$a_n = a_1 + (n - 1)d.$$

Example

Find a symbolic representation (formula) for the arithmetic sequence given by $6, 10, 14, 18, 22,...$

Solution

The first term is 6. Successive terms can be found by adding 4 to the previous term. $a_1 = 6$ and $d = 4$

$$a_n = a_1 + (n - 1)d$$

$$= 6 + (n - 1)(4)$$

$$= 4n + 2$$
Geometric Sequences

- Geometric sequences are capable of either rapid growth or decay.

Examples
- Population
- Salary
- Automobile depreciation

INFINITE GEOMETRIC SEQUENCE

An infinite geometric sequence is a function defined by $f(n) = cr^{n-1}$, where c and r are nonzero constants. The domain of f is the set of natural numbers.
Example

Find a general term \(a_n \) for the geometric sequence; \(a_3 = 18 \) and \(a_6 = 486 \).

Solution

Find \(a_n = cr^{n-1} \) so that \(a_3 = 18 \) and \(a_6 = 486 \).

Since \(\frac{a_6}{a_3} = \frac{cr^{6-1}}{cr^{3-1}} = \frac{r^5}{r^2} = r^3 \) and \(\frac{a_6}{a_3} = \frac{486}{18} = 27 \),

\[r^3 = 27 \text{ or } r = 3. \]

So \(a_n = c(3)^{n-1} \).
Therefore \(a_3 = c(3)^{3-1} = 18 \) or \(c = 2 \).
Thus \(a_n = 2(3)^{n-1} \).
Understand basic concepts about series
Identify and find the sum of arithmetic series
Identify and find the sum of geometric series
Learn and use summation notation
Introduction

- A series is the summation of the terms in a sequence.
- Series are used to approximate functions that are too complicated to have a simple formula.
- Series are instrumental in calculating approximations of numbers like π and e.

SERIES

A finite series is an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n,$$

and an infinite series is an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots.$$
Infinite Series

- An infinite series contains many terms.
- Sequence of partial sums:
 \[
 S_1 = a_1 \\
 S_2 = a_1 + a_2 \\
 S_3 = a_1 + a_2 + a_3 \\
 \vdots \\
 S_n = a_1 + a_2 + a_3 + \cdots + a_n
 \]

- If \(S_n \) approaches a real number \(S \) as \(n \to \infty \), then the sum of the infinite series is \(S \).
- Some infinite series do not have a sum \(S \).
Example

For $a_n = 3n - 1$, calculate S_5.

Solution

Since $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$, start calculating the first five terms of the sequence $a_n = 3n - 1$.

$\begin{align*}
a_1 &= 3(1) - 1 = 2 \\
a_2 &= 3(2) - 1 = 5 \\
a_3 &= 3(3) - 1 = 8 \\
a_4 &= 3(4) - 1 = 11 \\
a_5 &= 3(5) - 1 = 14 \\
\end{align*}$

Thus $S_5 = 2 + 5 + 8 + 11 + 14 = 40$
Arithmetic Series

- Summing the terms of a arithmetic sequence results in an arithmetic series.

SUM OF THE FIRST \(n \) TERMS OF AN ARITHMETIC SEQUENCE

The sum of the first \(n \) terms of an arithmetic sequence, denoted \(S_n \), is found by averaging the first and \(n \)th terms and then multiplying by \(n \). That is,

\[
S_n = a_1 + a_2 + a_3 + \cdots + a_n = n \left(\frac{a_1 + a_n}{2} \right).
\]
Arithmetic Series continued

Since \(a_n = a_1 + (n - 1)d \), \(S_n \) can also be written in the following way.

\[
S_n = n \left(\frac{a_1 + a_n}{2} \right)
\]

\[
= \frac{n}{2} \left(a_1 + a_1 + (n-1)d \right)
\]

\[
= \frac{n}{2} \left(2a_1 + (n-1)d \right)
\]
Example

Use the formula to find the sum of the arithmetic series $4 + 7 + 10 + \cdots + 58$.

Solution

The series has $n = 19$ terms with $a_1 = 4$ and $a_{19} = 58$. We can then use the formula to find the sum.

$$S_n = n \left(\frac{a_1 + a_n}{2} \right)$$

$$S_{19} = 19 \left(\frac{4 + 58}{2} \right) = 589$$
Example

A worker has a starting annual salary of $45,000 and receives a $2500 raise each year. Calculate the total amount earned over 5 years.

Solution

The arithmetic sequence describing the salary during year n is computed by

$$a_n = 45,000 + 2500(n - 1).$$

The first and fifth year’s salaries are

$$a_1 = 45,000 + 2500(1 - 1) = 45,000$$

$$a_5 = 45,000 + 2500(5 - 1) = 55,000$$
Solution continued

Thus the total amount earned during this 5-year period is

\[S_5 = 5 \left(\frac{45,000 + 55,000}{2} \right) = $250,000. \]

The sum can also be found using

\[S_n = \frac{n}{2} \left(2a_1 + (n - 1)d \right). \]

\[S_5 = \frac{5}{2} \left(2 \cdot 45,000 + (5 - 1) \cdot 2500 \right) = $250,000. \]
The sum of the terms of a geometric sequence is called a geometric series.

SUM OF THE FIRST \(n \) TERMS OF A GEOMETRIC SEQUENCE

If a geometric sequence has first term \(a_1 \) and common ratio \(r \), then the sum of the first \(n \) terms is given by

\[
S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right),
\]

provided \(r \neq 1 \).
Annuities

- An *annuity* is a sequence of deposits made at equal periods of time.
- After *n* years the amount is given by
 \[A_0 + A_0 (1+i) + A_0 (1+i)^2 + \cdots + A_0 (1+i)^{n-1}. \]

- This is a geometric series with first term \(a_1 = A_0 \) and common ratio \(r = (1 + i) \). The sum of the first *n* terms is given by
 \[S_n = A_0 \left(\frac{1-(1+i)^n}{1-(1+i)} \right) = A_0 \left(\frac{(1+i)^n - 1}{i} \right). \]
Example

A 30-year-old employee deposits $4000 into an account at the end of each year until age 65. If the interest rate is 8%, find the future value of the annuity.

Solution Let $A_0 = 4000$, $i = 0.08$, and $n = 35$. The future value of the annuity is given by

$$S_n = A_0 \left(\frac{(1+i)^n - 1}{i} \right)$$

$$= 4000 \left(\frac{(1+0.08)^{35} - 1}{0.08} \right)$$

$$= $689,267.$
Infinite Geometric Series

SUM OF AN INFINITE GEOMETRIC SEQUENCE

The sum of the infinite geometric sequence with first term \(a_1 \) and common ratio \(r \) is given by

\[
S = \frac{a_1}{1 - r},
\]

provided \(|r| < 1 \). If \(|r| \geq 1 \), then this sum does not exist.
Summation Notation

- *Summation notation* is used to write series efficiently. The symbol \sum, sigma, indicates the sum.

- The letter k is called the *index of summation*. The numbers 1 and n represent the subscripts of the first and last term in the series. They are called the *lower limit* and *upper limit* of the summation, respectively.
Example

Evaluate each series.

a) \[\sum_{k=1}^{3} 4k = 4 + 8 + 12 = 24 \]

b) \[\sum_{k=1}^{3} 4 = 4 + 4 + 4 = 12 \]

c) \[\sum_{k=1}^{6} (3k + 6) = (3(1) + 6) + (3(2) + 6) + (3(3) + 6) + (3(4) + 6) + (3(5) + 6) + (3(6) + 6) \]
\[= 9 + 12 + 15 + 18 + 21 + 24 = 99 \]
Properties for Summation Notation

PROPERTIES FOR SUMMATION NOTATION

Let \(a_1, a_2, a_3, \ldots, a_n \) and \(b_1, b_2, b_3, \ldots, b_n \) be sequences, and \(c \) be a constant.

1. \(\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k \)

2. \(\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \)

3. \(\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \)

4. \(\sum_{k=1}^{n} c = nc \)

5. \(\sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \)

6. \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \)
Example

Use properties for summation notation to find each sum.

a) $\sum_{k=1}^{18} 4k$

b) $\sum_{k=1}^{11} 4k^2 - 6$

Solution

a) $\sum_{k=1}^{18} 4k = 4 \sum_{k=1}^{18} k$

$= 4 \times \frac{18(18+1)}{2}$

$= 684$

b) $\sum_{k=1}^{11} 4k^2 - 6 = \sum_{k=1}^{11} 4k^2 - \sum_{k=1}^{11} 6$

$= 4 \sum_{k=1}^{11} k^2 - \sum_{k=1}^{11} 6$

$= 4 \times \frac{11(11+1)(2\times11+1)}{6} - 11(6)$

$= 1958$