Welcome Statement

Welcome to University Physics I Web Version, an on-line physics course that makes use of a digital physics textbook that you will purchase on-line. This course is a calculus-based physics course designed for science majors in fields such as physics, computer science and engineering. Topics include: laws of motion, force, momentum, work and energy, angular momentum, and rotational and oscillatory motion.

To ensure your success in this course, please be sure you meet the minimum prerequisites. They are

1. MATH 2413 within the last five years with a C or better
2. Concurrent enrollment in MATH 2414, PHYS 2425 Lab

These prerequisite courses must be completed BEFORE you enroll in this course. You must also register for a laboratory section for this course. Physics can be a difficult subject to master because it encompasses a blend of concepts explaining how our natural world works expressed through the language of mathematics. It is essential that you have the appropriate math skills for this course. The primary reason most students have difficulty in this course is due to a lack of math skills.

Course Timeline

The following timeline is provided to serve as a guide for this course.

Step 1 – Register for this course
Step 2 – Immediately notify Professor Brooks (mbrooks@collin.edu). I will send you important information regarding this course to get you started.
Step 3 – Once the semester begins, all class communication will occur within your course Blackboard communication tools (email, discussion forum, etc). Until the course begins, you may use your personal email.
Step 4 – Purchase your digital physics textbook following the instructions in the syllabus (more textbook info is included below).
Step 5 – Set up your online assignment account following the instructions in the syllabus (more assignment info is included below).
Step 6 – Upon the first day of class, access your Blackboard account for this course by using the login information you were given during registration. All class communication and course information will be provided through Blackboard.
Step 7 – Read through all course materials and instructions given on the Blackboard course website. Begin reading through the digital physics textbook and complete assignments.
Step 8 – You should frequently check the Blackboard course website for class announcements and discussions. If you have homework questions, post them on the discussion board. By posting your questions on the Blackboard course website, everyone in class can benefit.
Step 9 – Complete tests as assigned. Once the course begins you will have access to the “Tests” link on the Blackboard course website for test dates and test information. All tests will be given on-campus at the PRESTON RIDGE CAMPUS testing center in Founders Hall (room F209).
Step 10 – Take the Final Exam to complete this course. The Final Exam is comprehensive.

Class Format

This a distance learning course in which you will be instructed through interaction with your digital physics textbook. There are no in-class meetings for this course. Any questions you have regarding course material, assignments, tests, etc, will be addressed by using the communication tools outlined below. I am available to meet with during my office hours which are posted at my instructor website. More information will be available upon start of course.

Textbook

Online courses present unique challenges and require you as a student to make an extra effort to read the course materials and complete all assignments. The instruction for this course comes from you reading through the digital textbook developed by Kinetic Books. The digital textbook used for this course is a unique blend of textual information, interactive animations, multimedia content, and interactive examples. The course assignments will be completed online and cannot be completed without purchasing the digital textbook.

You should purchase your digital textbook immediately upon enrolling in this course. The digital textbook can be accessed via CD or online from the Kinetic Books website. Digital textbooks are purchased at the Kinetic Books online store via credit card at:

Kinetic Books Store

Refer to the syllabus for detailed instructions on how to order your digital physics textbook.
Assignments
Your assignments for this class consists of the following components:

(1) Homework problems which you will complete online via the Kinetic Books website
(2) Physics Video Worksheets which you will complete as you watch the Mechanical Universe physics video series
(3) A "Physics of Sports" project

See the COURSE SYLLABUS for assignment details.

Testing
Tests for this course consist of a midterm and final exam with each composed of approximately 40 multiple choice questions and problems that reflect concepts covered in the digital physics textbook. Several of the test questions come directly from the assigned homework problems. Some of the problems pose a conceptual question that requires a non-numeric (qualitative) answer. Other problems involve equations and mathematical calculations with a numeric (quantitative) answer. The best way to prepare for tests is to complete the homework assignments thoroughly.

Tests are not given back to students. Test scores will be posted online. Students who wish to review their test may schedule an appointment with Professor Brooks.

Additional testing information, including test dates and test reviews, is available under the “Tests” link on this course Blackboard website.

Labs
All students must register for an accompanying laboratory section for this course. All labs are performed on-campus in a physics laboratory. Students will participate in at least 12 experiments during this course, each designed to investigate concepts covered in the lectures. Individual lab instructors will provide more information on lab grading policies and guidelines. Students can register for any PHYS 2425 lab at any Collin College campus.

Class Communications
Communication with your instructor and peers is vitally important in this class, especially in regards to completing assignments. All communication for this course will be handled through Blackboard via the communication tools available through this course website. You are expected to interact with this class site on a regular basis (that means at least once a week, if not more frequently). I will usually reply to emails or discussion questions the same or next day.

The Blackboard communications tools and how you may use them are outlined below:

- **Mail**
 Use only the Blackboard Mail tool in this course to communicate with your instructor.

- **Discussions**
 The Blackboard discussion tool is a great place to post assignment questions so that everyone in class may follow the discussion/solution. I will reply to assignment questions in the discussion forum. When you have assignment questions, check the discussion forum first to see if an answer to your question has already been posted.

- **Chat**
 Use the Chat tool to have live discussions with classmates.