Epithelial Tissues

- Characteristics
- Functions
- Specializations
Simple Squamous Epithelium

LOCATIONS: Mesothelia lining ventral body cavities; endothelium lining heart and blood vessels; portions of kidney tubules (thin sections of nephron loops); inner lining of cornea; alveoli of lungs

FUNCTIONS: Reduces friction; controls vessel permeability; performs absorption and secretion

Stratified Squamous Epithelium

LOCATIONS: Surface of skin; lining of mouth, throat, esophagus, rectum, anus, and vagina

FUNCTIONS: Provides physical protection against abrasion, pathogens, and chemical attack

Simple Cuboidal Epithelium

LOCATIONS: Glands: ducts; portions of kidney tubules; thyroid gland

FUNCTIONS: Limited protection, secretion, absorption

Stratified Cuboidal Epithelium

LOCATIONS: Lining of some ducts (rare)

FUNCTIONS: Protection, secretion, absorption

Transitional Epithelium

LOCATIONS: Urinary bladder; renal pelvis; ureters

FUNCTIONS: Permits expansion and recoil after stretching
Simple Columnar Epithelium

LOCATIONS: Lining of stomach, intestine, gallbladder, uterine tubes, and collecting ducts of kidneys

FUNCTIONS: Protection, secretion, absorption

Pseudostratified Ciliated Columnar Epithelium

LOCATIONS: Lining of nasal cavity, trachea, and bronchi; portions of male reproductive tract

FUNCTIONS: Protection, secretion, move mucus with cilia

Stratified Columnar Epithelium

LOCATIONS: Small areas of the pharynx, epiglottis, anus, mammary glands, salivary gland ducts, and urethra

FUNCTION: Protection
Connective

• Characteristics
• Functions
• Cells
This is the first connective tissue to appear in an embryo.

This sample was taken from the umbilical cord of a fetus.

Adipose Tissue
- **LOCATIONS**: Deep to the skin, especially at sides, buttocks, breasts; padding around eyes and kidneys
- **FUNCTIONS**: Provides padding and cushions shocks; insulates (reduces heat loss); stores energy

Reticular Tissue
- **LOCATIONS**: Liver, kidney, spleen, lymph nodes, and bone marrow
- **FUNCTIONS**: Provides supporting framework
Dense Regular Connective Tissue

LOCATIONS: Between skeletal muscles and skeleton (tendons and aponeuroses); between bones or stabilizing positions of internal organs (ligaments); covering skeletal muscles; deep fasciae

FUNCTIONS: Provides firm attachment; conducts pull of muscles; reduces friction between muscles; stabilizes relative positions of bones

![Tendon](image)

Dense Irregular Connective Tissue

LOCATIONS: Capsules of visceral organs; periosteum and perichondria; nerve and muscle sheaths; dermis

FUNCTIONS: Provides strength to resist forces applied from many directions; helps prevent overexpansion of organs such as the urinary bladder

![Deep dermis](image)

Elastic Tissue

LOCATIONS: Between vertebrae of the spinal column (ligamentum flavum and ligamentum nuchae); ligaments supporting penis; ligaments supporting transitional epithelia; in blood vessel walls

FUNCTIONS: Stabilizes positions of vertebrae and penis; cushions shocks; permits expansion and contraction of organs

![Elastic ligament](image)
Membranes

- **Mucous membranes** are coated with the secretions of mucous glands. These membranes line the digestive, respiratory, urinary, and reproductive tracts.

- **Serous membranes** line the ventral body cavities (the peritoneal, pleural, and pericardial cavities).

- **The cutaneous membrane**, or skin, covers the outer surface of the body.

- **Synovial membranes** line joint cavities and produce the fluid within the joint.
Muscle Tissue

- Characteristics
- Function
Nervous

- Characteristics
- Functions
Tissue Injury and Repair

Tissues are not isolated; they combine to form organs with diverse functions. Therefore, any injury affects several types of tissue simultaneously. To preserve homeostasis, the tissues must respond in a coordinated way. The restoration of homeostasis involves two related processes: inflammation and regeneration.

Mast Cell Activation
When an injury damages connective tissue, mast cells release a variety of chemicals. This process, called mast cell activation, stimulates inflammation.

Exposure to Pathogens and Toxins
Injured tissue contains an abnormal concentration of pathogens, toxins, waste products, and the chemicals from injured cells.

Increased Blood Flow
In response to the released chemicals, blood vessels dilate, increasing blood flow through the damaged tissue.

Increased Oxygen and Nutrients
Increased oxygen and increased blood flow result in enhanced delivery of oxygen and nutrients.

Increased Phagocytes
Phagocytes in the tissue are activated, and they begin engulfing tissue debris and pathogens.

Removal of Toxins and Wastes
Enhanced circulation carries away toxins and waste products, distributing them to the kidneys for excretion, or to the liver for inactivation.

Regeneration
Regenerative repair occurs after the damaged tissue has been stabilized and the inflammation has subsided. Fibroblasts move into the area, laying down a collagenous framework known as scar tissue. Over time, scar tissue is usually "remodeled" and gradually assumes a more normal appearance.

Inflammation Subsides
Over a period of hours to days, the cleanup process generally succeeds in eliminating the inflammatory stimulus.

[Image: http://www6.ufrgs.br/favet/imunovet/molecular_immunology/inflammation_cartoon.jpg]