Blood Types

- Determined by the presence or absence of surface antigens (agglutinogens)
 - Antigens A, B and Rh (D)
- Antibodies in the plasma (agglutinins)
- Cross-reactions occur when antigens meet antibodies
Blood Types and Cross Reactions

(a) Blood Types

- **TYPE A**: Surface antigen A, Anti-B antibodies
- **TYPE B**: Surface antigen B, Anti-A antibodies
- **TYPE AB**: Surface antigens A and B, Neither anti-A nor anti-B antibodies
- **TYPE O**: Neither A nor B surface antigens, Anti-A and anti-B antibodies

(b) Cross Reactions

Surface antigens + Opposing antibodies → Agglutination (clumping) and hemolysis

Blood Types and Cross Reactions

<table>
<thead>
<tr>
<th>Blood sample</th>
<th>Anti-A</th>
<th>Anti-B</th>
<th>Anti-D</th>
<th>Blood type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A⁻</td>
</tr>
</tbody>
</table>
Blood Group Distributions

<table>
<thead>
<tr>
<th>Population</th>
<th>O</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>RH^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. (AVERAGE)</td>
<td>46</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>African-American</td>
<td>49</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>Caucasian</td>
<td>45</td>
<td>40</td>
<td>11</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>Chinese-American</td>
<td>42</td>
<td>27</td>
<td>25</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Filipino-American</td>
<td>44</td>
<td>22</td>
<td>29</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>46</td>
<td>46</td>
<td>5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Japanese-American</td>
<td>31</td>
<td>39</td>
<td>21</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Korean-American</td>
<td>32</td>
<td>28</td>
<td>30</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>NATIVE NORTH AMERICAN</td>
<td>79</td>
<td>16</td>
<td>4</td>
<td><1</td>
<td>100</td>
</tr>
<tr>
<td>NATIVE SOUTH AMERICAN</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>AUSTRALIAN ABORIGINAL</td>
<td>44</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Rh Factor and Pregnancy

First pregnancy
- Maternal blood
- Fetal tissue
- Placenta
- Mother Rh^-
- Fetus Rh^+

Second pregnancy
- Maternal blood
- Fetal tissue
- Hemorrhaging at delivery
- Maternal antibody production (anti-rh)
White Blood Cells: Leukocytes

WBCs in order of abundance:
- Never (neutrophils)
- Let (lymphocytes)
- Monkeys (monocytes)
- Eat (eosinophils)
- Bananas (basophils)

How do I remember the relative percentages?
60 + 30 + 6 + 3 + 1
(i.e., 60% neutrophils, 30% lymphocytes, 6% monocytes, 3% eosinophils & 1% basophils)
White Blood Cells: Leukocytes

Granulocytes

- Granulocytes – neutrophils, eosinophils, and basophils
 - Contain cytoplasmic granules that stain specifically (acidic, basic, or both) with Wright’s stain
 - Are larger and usually shorter-lived than RBCs
 - Have lobed nuclei
 - Are all phagocytic cells

Neutrophils

- Neutrophils have two types of granules that:
 - Take up both acidic and basic dyes
 - Give the cytoplasm a lilac color
 - Contain peroxidases, hydrolytic enzymes, and defensins (antibiotic-like proteins)
- Neutrophils are our body’s bacteria slayers
White Blood Cells: Leukocytes

Eosinophils

- Eosinophils account for 1–4% of WBCs
 - Have red-staining, bilobed nuclei connected via a broad band of nuclear material
 - Have red to crimson (acidophilic) large, coarse, lysosome-like granules
 - Lead the body’s counterattack against parasitic worms
 - Lessen the severity of allergies by phagocytizing immune complexes

Basophils

- Account for 0.5% of WBCs and:
 - Have U- or S-shaped nuclei with two or three conspicuous constrictions
 - Are functionally similar to mast cells
 - Have large, purplish-black (basophilic) granules that contain histamine
 - Histamine – inflammatory chemical that acts as a vasodilator and attracts other WBCs (antihistamines counter this effect)
White Blood Cells: Leukocytes

Agranulocytes

- Agranulocytes – lymphocytes and monocytes:
 - Lack visible cytoplasmic granules
 - Are similar structurally, but are functionally distinct and unrelated cell types
 - Have spherical (lymphocytes) or kidney-shaped (monocytes) nuclei

Lymphocytes

- Account for 25% or more of WBCs and:
 - Have large, dark-purple, circular nuclei with a thin rim of blue cytoplasm
 - Are found mostly enmeshed in lymphoid tissue (some circulate in the blood)
- There are two types of lymphocytes: T cells and B cells
 - T cells function in the immune response
 - B cells give rise to plasma cells, which produce antibodies
White Blood Cells: Leukocytes

Monocytes

- Monocytes account for 4–8% of leukocytes
 - They are the largest leukocytes
 - They have abundant pale-blue cytoplasms
 - They have purple-staining, U- or kidney-shaped nuclei
 - They leave the circulation, enter tissue, and differentiate into macrophages

Macrophages

- Are highly mobile and actively phagocytic monocytes
- Activate lymphocytes to mount an immune response
White Blood Cell Synthesis

- **Leukopoiesis** is stimulated by chemical messengers called interleukins and colony-stimulating factors (CSFs)
 - Interleukins are numbered (e.g., IL-1, IL-2), whereas CSFs are named for the WBCs they stimulate (e.g., granulocyte-CSF stimulates granulocytes)

- Macrophages and T cells are very important sources of cytokines (include interferons and interleukins)

- Cytokines influence cell development, differentiation and responses in the immune system

- Many hematopoietic hormones are used clinically to stimulate bone marrow (such as EPO and CSF’s)

White Blood Cell Synthesis

- All leukocytes originate from hemocytoblasts
- Hemocytoblasts differentiate into
 - Myeloid stem cells (via GM-CSF stimulation)
 - Lymphoid stem cells (via IL-7)
 - Myeloid stem cells become myeloblasts or monoblasts
 - Lymphoid stem cells become lymphoblasts
- Myeloblasts develop into the granulocytes (eosinophils, neutrophils, and basophils)
- Monoblasts develop into monocytes via M-CSF stimulation
- Lymphoblasts develop into lymphocytes
White Blood Cell Synthesis

White Blood Cell Abnormalities

Leukemia

- Leukemia refers to cancerous conditions involving WBCs
- Leukemias are colonies of a single clone and are named according to the abnormal WBCs involved
 - Myelocytic leukemia – involves myeloblasts
 - Lymphocytic leukemia – involves lymphocytes
- Acute leukemia involves blast-type cells and primarily affects children
- Chronic leukemia is more prevalent in older people
White Blood Cell Abnormalities

Leukemia

• Immature WBCs are found in the bloodstream in all leukemias
• Bone marrow becomes totally occupied with cancerous leukocytes
• The WBCs produced, though numerous, are not functional
• Death is caused by internal hemorrhage and overwhelming infections
• Treatments include irradiation, antileukemic drugs, and bone marrow transplants

White Blood Cell Abnormalities

Leukopenia?

Leukocytosis?

Mononucleosis?