Welcome Statement:

Welcome to General Physics I online! Be sure to read through your syllabus for a complete description of this course including resources and requirements. The purpose of this orientation is to give more detail about the format of this online course and what you need to do to succeed!

Course Timeline:

The following timeline is provided to serve as a guide for this course.

- **Step 1** - Register for this course
- **Step 2** - Immediately email your instructor to receive important information regarding this course.
- **Step 3** - Once the semester begins, all class communication will occur within your course Blackboard communication tools (email, discussion forum, etc). Until the course begins, you may use your personal email.
- **Step 4** - Purchase your textbook and online resources following the instructions in the syllabus
- **Step 5** - Upon the first day of class, access your Blackboard account for this course by using the login information you were given during registration. All class communication and course information will be provided through Blackboard.
- **Step 6** - Read through all course materials and instructions given on the Blackboard course website. Begin reading through your textbook and complete the related assignments. Use the course calendar given in the syllabus as a guideline.
- **Step 7** - You should frequently check the Blackboard course website for class announcements and discussions. If you have homework questions, post them on the discussion board. By posting your questions on the Blackboard course website, everyone in class can benefit.

Class Format

Online courses present unique challenges and require you as a student to make an extra effort to read the course materials and complete all assignments. The instruction for this course comes from you reading through the digital textbook developed by Kinetic Books. The digital textbook used for this course is a unique blend of textual information, interactive animations, multimedia content, and interactive examples. The course assignments will be completed online and cannot be completed without purchasing the digital textbook. Additional instruction will be provided by online lecture videos available for each chapter (the Mechanical Universe series).

There are no in-class meetings for this course. Communication with your instructor and peers is vitally important in this class, especially in regards to completing assignments. All online communication for this course will be handled through Blackboard via the communication tools available through this course website. You are expected to interact with this class site on a regular basis (that means at least once or twice each week, if not more frequently). Instructor response time for emails or discussion questions is typically the
same or next day (except on weekends). The Blackboard communications tools and how you may use them are outlined below:

- **Mail**: Use the Blackboard Mail tool in this course to communicate with your instructor.
- **Discussions**: The Blackboard discussion tool is a great place to post assignment questions so that everyone in class may follow the discussion/solution. Students are encouraged to reply to assignment questions in the discussion forum. When you have assignment questions, check the discussion forum first to see if an answer to your question has already been posted.
- **Chat**: Use the Chat tool to have live discussions with classmates.

Assignments

Your assignments for this class consist of the following components:

1. **Homework problems** which you will complete online via the Kinetic Books website
2. **Physics Video Worksheets** which you will complete as you watch the Mechanical Universe physics video series
3. A "**Physics of Sports**" project
4. **Graded Discussions**

See the course syllabus and/or the “Assignment Details” page for more information.

Labs

The laboratory portion of this course consists of two components that count equally toward your lab grade:

1. **Simulation Labs**: These labs are based on online simulations that cover a particular physics concept. A worksheet accompanies each simulation which you will complete and email to your instructor.
2. **On-campus Labs**: Hands-on experience is a very important aspect of any science laboratory! You will participate in a variety of physics labs in a traditional physics laboratory.

Exams

Exams for this course consist of a **midterm** and **final exam** (comprehensive) with each composed of approximately 40 multiple choice questions and problems that reflect concepts covered in the digital physics textbook. Several of the test questions come directly from the assigned homework problems. Some of the problems pose a conceptual question that requires a nonnumeric (qualitative) answer. Other problems involve equations and mathematical calculations with a numeric (quantitative) answer. The best way to prepare for tests is to complete the homework assignments thoroughly.

Exams are given in the Preston Ridge Testing Center and are not given back to students. Test scores will be posted online. Students who wish to review their exams may schedule an appointment with Professor Brooks. Additional testing information, including test dates and test reviews, is available under the “Tests” page on the Blackboard home page for this course.
Technical Support

For technical assistance, contact the eCollin Help Desk.

Blackboard Technical Support - 972-377-1777