18.3 Absolute-Value Equations and Inequalities

- **Absolute Value**: the distance from zero on a number line.

Ex. \(|x| = 5 \)

The variable can have a value of either 5 or -5 because both of these numbers are 5 units from zero on the number line.

Absolute Value Property

If \(|x| = a \), where \(x \) is a variable or an expression and \(a \geq 0 \), then \(x = a \) or \(x = -a \).

Ex. Solve. Write the solution in set notation.

(a) \(|x| = 9 \)
(b) \(|p| = 0 \)
(c) \(|x| = -3 \)

In general, the following is true:

- If \(a \) is **positive**, the equation \(|x| = a \) has **two solutions**, \(a \) and \(-a \).
- If \(a \) is **0**, the equation \(|x| = a \) has **one solution**, 0.
- If \(a \) is **negative**, the equation \(|x| = a \) has **no solution**.
Ex. Solve. Write the solution in set notation.

(a) $|x + 2| = 3$.

(b) $|3x| = -8$

(c) $|5x| - 3 = 37$

(d) $3 - 2|x| = -7$

\[\text{Absolute Value Inequalities} \]

Ex. $|x| < 5$

The solution set of $|x| < 5$ contains all numbers whose distance from 0 is less than 5 units on the number line.

Ex. $|x| > 5$

The solution set of $|x| > 5$ contains all numbers whose distance from 0 is more than 5 units on the number line.
Absolute Value Inequalities of the Form $|X| < a$

If a is a positive number, then $|X| < a$ is equivalent to $-a < X < a$, where X is a variable or an expression. This property also holds true for the inequality symbol \leq.

Ex. Solve. Write the solution in set-builder notation.

(a) $|y - 2| \leq 5$
(b) $|x + 1| + 11 < 9$

(c) $-17 + |3 + 5x| < -4$
(d) $|3x + 6| \leq 0$
Absolute Value Inequalities of the Form \(|X| > a\)

If \(a\) is a positive number, then \(|X| > a\) is equivalent to \(X < -a\) or \(X > a\), where \(X\) is a variable or an expression. This property also holds true for the inequality symbol \(\geq\).

Ex. Solve. Write the solution in set-builder notation.

(a) \(|y - 2| \geq 5\)

(b) \(|x + 1| + 11 > 9\)

(c) \(-17 + |3 + 5x| > -4\)

(d) \(|3x + 6| \geq 0\)