19.1 Radical Expressions and Functions

❖ Square Roots

Square Root
The number \(c \) is a square root of \(a \) if \(c^2 = a \).

Ex. Find the square roots of 49.

Principal Square Root
The principal square root of a nonnegative number is its nonnegative square root.

Ex. The principal square root of 16 is 4.

Radical sign: \(\sqrt{\text{ }} \)

Radicand: the expression under the radical sign (ex. \(\sqrt{5} \), \(\sqrt{a} \), \(-\sqrt{3x} \), \(\sqrt{\frac{y^2 + 7}{y}} \))

Index (plural, indices): \(\sqrt[n]{a} \) for \(n \)th root \(\Rightarrow \) the number \(n \) is called the index.

Ex. Identify the radicand and the index for each expression.

(a) \(-7\sqrt{y^2 - 8}\) \hspace{2cm} (b) \(a^2b^5\sqrt[3]{\frac{a}{a^2 - b}}\)

Ex. Simplify

(a) \(\sqrt{196}\) \hspace{2cm} (b) \(-\sqrt[3]{\frac{81}{144}}\) \hspace{2cm} (c) \(\sqrt{0.36}\)

Square roots of perfect square radicands simplify to rational numbers. What happens when we try to simplify a root such as \(\sqrt{11}\) ?

Use a calculator to approximate \(\sqrt{11}\) to 3 decimal places. Check to see that your approximation is reasonable.
Expressions of the Form $\sqrt{a^2}$

Simplifying $\sqrt{a^2}$

For any real number a,

$$\sqrt{a^2} = |a|.$$

(The principal square root of a^2 is the absolute value of a.)

Ex. Simplify each expression. Assume that the variable can represent any real numbers.

(a) $\sqrt{25t^2}$
(b) $\sqrt{x^2 - 8x + 16}$

(c) $\sqrt{x^{16}}$
(d) $\sqrt{(r - 1)^4}$

Cube Roots

Cube Root

The number c is the cube root of a if $c^3 = a$. In symbols, we write $\sqrt[3]{a}$ to denote the cube root of a.

Ex. Simplify (a) $\sqrt[3]{64}$
(b) $-\sqrt[3]{-125y^6}$

Odd and Even nth Roots $\sqrt[n]{a}$

Odd Roots
Odd roots of positive numbers are positive.
Odd roots of negative numbers are negative.
Absolute-value signs are not used when finding odd roots.

Even Roots
Even roots of positive numbers are positive.
Negative numbers do not have real nth roots when n is even.
Absolute-value signs are often necessary when finding even nth roots.
Ex. Simplify. Assume that the variables represent any real numbers. Remember to use absolute-value notation when necessary.

(a) \[\sqrt[5]{-\frac{32}{243}} \]
(b) \[6\sqrt[5]{(x-5)^6} \]
(c) \[4\sqrt[4]{(-2)^4} \]

Ex. Simplify. Assume that all variables represent nonnegative numbers.

(a) \[\sqrt[10]{\frac{y^{10}}{9x^6}} \]
(b) \[\sqrt[5]{-243d^{15}} \]
(c) \[-\frac{4}{\sqrt[n]{16m^4}} \]

\textbf{Radical Functions and Models}

\textbf{Radical Function}: a function that can be describe by a radical expression.

Ex. For \(g(x) = \sqrt{x^2 - 25} \), find the specified function value, if it exists.

(a) \(g(-6) \)
(b) \(g(3) \)
(c) \(g(13) \)

Ex. For \(g(x) = -\sqrt[3]{2x-1} \), find the specified function value, if it exists.

(a) \(g(-13) \)
(b) \(g(63) \)

\textbf{The square-root function}: \(f(x) = \sqrt{x} \)
Domain: \([0, \infty) \) or \(\{x \mid x \geq 0\} \)

Graph \(f(x) = \sqrt{x} \).

Ex. Determine the domain of each function described.

(a) \(f(x) = \sqrt[4]{x-7} \)
(b) \(g(t) = \sqrt[3]{2t-5} \)

(c) \(H(x) = 5 - \sqrt[8]{1-4x} \)
(d) \(P(x) = 2 + \sqrt{3x-5} \)