3.4 Zeros of Polynomials
In this section, we study methods for finding zeros of polynomial functions.

Remember: the relationship among zeros, roots, and x-intercepts.
The zeros of a function are the roots, or solutions, of the equation \(f(x) = 0 \).
The real zeros, or real roots, are the x-intercepts of the graph of \(f \).

❖ **Rational Zero Theorem**
This theorem provides us with a tool that we can use to make a list of all possible rational zeros of a polynomial function.

<table>
<thead>
<tr>
<th>The Rational Zero Theorem</th>
</tr>
</thead>
</table>
| If \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0 \) has integer coefficients and \(\frac{p}{q} \) is a rational zero of \(f \), then \(p \) is a factor of the constant term, \(a_0 \), and \(q \) is a factor of the leading coefficient, \(a_n \).

Find all the possible rational zeros:
1.) \(p \): List all the integers that are factors of the constant term.
2.) \(q \): List all the integers that are factors of the leading coefficient.
3.) Possible rational zeros = \(\frac{\text{Factors of the constant term}}{\text{Factors of the leading coefficient}} = \frac{p}{q} \)

Ex. Use the Rational Zero Theorem to list all possible rational zeros for the given function.
\[f(x) = -4x^4 + 5x^3 - 7x^2 - 6x + 8 \]

\(p \): ____________________________ (factors of 8)

\(q \): ____________________________ (factors of -4)

\(\frac{p}{q} \): ____________________________
Find all real zeros of a polynomial function \(f(x) \):

Step 1: Find all possible rational zeros \(\pm \frac{p}{q} \).

Step 2: Graph the function and determine which zeros (x-intercepts on the graph) to use in synthetic division.

Step 3: Perform synthetic division to determine which possible zeros yield a remainder of zero. If the degree of a polynomial is 3 or higher, continue to use synthetic division (repeat Step 2 to Step 3) until another zero is found.

Step 4: Rewrite the function as a product of factors, linear and quadratic. Zeros of the quadratic factor are found by factoring, the quadratic formula, or the square root property.

Step 5: Solve \(f(x) = 0 \).

Properties of Roots of Polynomial Equations

1. If a polynomial equation is of degree \(n \), then counting multiple roots separately, the equation has \(n \) roots.

2. If \(a + bi \) is a root of a polynomial equation with real coefficients \((b \neq 0) \), then the imaginary number \(a - bi \) is also a root. Imaginary roots, if they exist, occur in conjugate pairs.

The Fundamental Theorem of Algebra

If \(f(x) \) is a polynomial of degree \(n \geq 1 \) with complex coefficients, then \(f(x) \) has at least one complex zero.

Ex. Find all zeros of \(f(x) = 2x^4 + 3x^3 - 15x^2 - 32x - 12 \).
Ex. (#22) Find all zeros of \(f(x) = 7x^3 - x^2 - 21x + 3 \).

Ex. (#38) A polynomial \(f(x) \) and one or more of its zeros is given.

\[
f(x) = 2x^5 - 5x^4 - 4x^3 - 22x^2 + 50x + 75; \quad -1-2i \text{ and } \frac{5}{2} \text{ are zeros}
\]

(a) Find all the zeros.
(b) Factor \(f(x) \) as a product of linear factors.
(c) Solve \(f(x) = 0 \) the equation.